
DOI 10.1007/s10898-005-7074-4
Journal of Global Optimization (2006) 34: 159–190 © Springer 2006

Global Optimization with Nonlinear Ordinary
Differential Equations

ADAM B. SINGER and PAUL I. BARTON
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge,
USA

(Received 21 June 2004; accepted in revised form 4 May 2005)

Abstract. This paper examines global optimization of an integral objective function sub-
ject to nonlinear ordinary differential equations. Theory is developed for deriving a convex
relaxation for an integral by utilizing the composition result defined by McCormick (Math-
ematical Programming 10, 147–175, 1976) in conjunction with a technique for constructing
convex and concave relaxations for the solution of a system of nonquasimonotone ordinary
differential equations defined by Singer and Barton (SIAM Journal on Scientific Computing,
Submitted). A fully automated implementation of the theory is briefly discussed, and several
literature case study problems are examined illustrating the utility of the branch-and-bound
algorithm based on these relaxations.

Key words: Convex relaxations, dynamic optimization, nonquasimonotone differential equa-
tions

1. Introduction

Many practically important physical systems are modeled abstractly by
ordinary differential and integral equations. Classically, optimization of
these models has been addressed in their native infinite dimensional spaces
by the calculus of variations and optimal control; examples are found
in Troutman (1996), Pontriagin (1962), and Bryson, Jr. and Ho (1975).
The techniques developed for solving these problems are mainly based on
solving necessary conditions for local minima. Except for problems pos-
sessing certain convexity properties, global solutions are not verifiable. Fur-
thermore, even finding local minima is complicated by the fact that the
necessary conditions consist of difficult to solve two-point boundary value
problems, possibly in conjunction with application of the minimum prin-
ciple. However, with the increasing efficiency of computational methods
for solving initial value problems in large systems of differential equations,
the advent of methods for approximating the decision space with finite
dimension, and the increasing sophistication of techniques for robustly
solving finite dimensional optimization problems to global optimality, the
possibility of solving finite dimensional approximations of optimal control
problems globally has become a reality.

160 A. B. SINGER AND P. I. BARTON

In order to reduce an infinite dimensional optimization problem to a
finite dimensional problem, the problem must be discretized. Two differ-
ent discretization approaches exist: complete collocation (e.g., Neuman and
Sen, 1973; Tsang et al., 1975), in which both states and controls are discret-
ized, and control parameterization (e.g., Brusch and Schappelle, 1973; Teo
et al., 1991), in which only the controls are discretized. This paper exclu-
sively considers control parameterization.

A popular method for deterministic global optimization is the combina-
tion of branch-and-bound and relaxation techniques to eliminate systemat-
ically portions of the decision space that theoretically cannot contain the
minimum. If the relaxations are generated properly, these methods can be
shown to have finite convergence to ε tolerance. Esposito, and Floudas
(2000a,b), Papamichail and Adjiman (2002), and Singer and Barton (2004)
have previously presented deterministic methods for globally solving opti-
mization problems with differential equations embedded. These approaches
are now considered in more detail.

In their papers, Esposito, and Floudas (2000a,b) present the first practi-
cal deterministic algorithm for finding the global optimum of an optimal
control problem. Utilizing a branch-and-bound framework and building
on the αBB relaxation technique presented in Adjiman et al., (1998a,b),
they have shown that, under some mild differentiability assumptions, an
NLP with a dynamic system embedded is twice-continuously differentia-
ble. Hence, by computing an interval enclosure of the Hessian for any non-
convex terms in the objective and constraint functionals, a relaxation for
the nonconvex terms can be derived by adding a suitable quadratic term
to the original functional. A suitable quadratic term is one whose convex-
ity overpowers the nonconvexity of the original functional; this is guaran-
teed by selecting β parameters for the quadratic term such that the Hessian
for the combined quadratic and nonconvex function is positive-semidefi-
nite. In the abstract sense, the theoretical construct proposed by Esposito
and Floudas is rigorous. However, in practice, the algorithm as presented
is pseudo-deterministic because only sampling approaches are proposed for
determining the necessary β parameters. Moreover, not only is it very com-
putationally expensive to sample a high dimension space in order to calcu-
late β parameters, but in the worst case, incomplete sampling could yield a
β parameter that would not overpower the nonconvex term hence yielding
a nonconvex relaxation.

Recently, Papamichail and Adjiman (2002) have presented the first truly
rigorous deterministic global optimization algorithm for problems with
ordinary differential equations (ODEs) embedded. Again, a spatial branch-
and-bound algorithm is considered. The uniqueness of the approach is
in its rigorous construction of a convex relaxation. Rather than attempt
to convexify every term in the objective and constraint functionals with

GLOBAL OPTIMIZATION 161

state variables participating, their method substitutes a new real valued
decision variable for each state at a fixed time, relegating any noncon-
vexity arising from the state variables to equality constraints with both
the new variables and the state variables appearing explicitly. This new
equality constraint is then relaxed by deriving a convex lower bound-
ing inequality and a concave upper bounding inequality. Any other non-
convexities in the resulting transformed lower bounding problem are also
relaxed via standard convexification techniques. However, because a state
variable’s functional dependence on the optimization parameters is only
known indirectly via the solution of a system of differential equations, two
techniques based on differential inequalities are presented for rigorously
bounding these solutions. The first technique utilizes differential inequali-
ties to provide constant (relative to the embedded parameters) bounds on
the states. The second technique utilizes an α shift parameter and an over-
powering quadratic term to convexify or concavify a state while retaining
a functional dependence on the embedded parameter. The α parameter is
determined rigorously by a combination of interval arithmetic techniques
and the simultaneous solution of second order sensitivity equations. This
method may be computationally expensive, particularly if the number of
optimization parameters and constraints grows large, because the compu-
tation of second order sensitivities grows quadratically in the number of
optimization parameters. Moreover, the method is applicable only to objec-
tive functionals and constraints involving the state variables at fixed time
points.

Singer and Barton (2004) have presented a rigorous global optimization
technique applicable to optimal control problems with linear dynamic sys-
tems embedded. In their approach, a nonlinear objective functional is con-
sidered with particular emphasis on an integral formulation. Based on the
monotonicity property of the Lebesgue integral, a convexity theory is pre-
sented enabling the direct relaxation of a nonconvex integral. Rather than
adding new variables and new constraints to the problem, special struc-
tural properties of linear systems are exploited in a composition approach
to construct convex relaxations of the original nonconvex problem. These
relaxations are then used in a branch-and-bound framework to solve the
original nonconvex problem. The advantages of this approach are that the
optimization problems can be solved in their original integral form; new
variables, new constraints, and second order sensitivities are not needed;
and the relaxations derived by composition are relatively tight. The dis-
advantage, of course, is that the technique is restricted to problems with
embedded linear dynamic systems.

In this paper, we extend the ideas from Singer and Barton (2004) on linear
dynamics to encompass the solution of optimization problems with inte-
gral objective functions and nonlinear, nonquasimonotone dynamic systems.

162 A. B. SINGER AND P. I. BARTON

A deterministic branch-and-bound algorithm with finite ε convergence
to a global solution is developed. In general, any rigorous method for
constructing convex relaxations for an integrand is suitable for constructing
a convex relaxation for an integral. However, in this paper, we emphasize
utilizing the relaxation scheme of McCormick (1976) combined with our
technique for constructing convex relaxations for the solutions of parameter
dependent, nonlinear, nonquasimonotone ordinary differential equations as
presented in Singer and Barton (Submitted). Several small examples are
included to illustrate the complete construction of the relaxations, and larger
case studies are included to demonstrate the efficiency of the algorithm. For
the larger problems, the relaxations are generated automatically.

2. Problem Formulation

This section details the abstract mathematical formulation of the problems
considered in this paper. Throughout the paper, states are denoted by x,
parameters are denoted by p, and the independent variable is denoted by
t . Underlined variables denote that the variable is held constant. Bold type
is used to indicate vector-valued quantities. The general problem is now
stated as follows:

PROBLEM 2.1. Let P be a nonempty compact convex subset of R
np , X⊆

R
nx such that x(t,p)∈X ∀ (t,p)∈ [t0, tf]×P . Consider the following prob-

lem:

min
p

J (p)=φ(x(tf ,p),p)+
∫ tf

t0

�(t,x(t,p),p) dt

subject to

gi(x(tf ,p),p)+
∫ tf

t0

hi(t,x(t,p),p) dt ≤0, i =1, . . . , nc

where x(t,p) is given by

ẋ = f(t,x,p)

x(t0,p)=x0(p)

and p∈P ; φ is a continuous mapping φ :X×P →R; � is a Lebesgue inte-
grable mapping � : (t0, tf] × X × P → R; fi is a Lebesgue integrable map-
ping fi : (t0, tf] × X × P → R, i = 1, . . . , nx ; xi0 is a continuous mapping
xi0 : P → R, i = 1, . . . , nx ; gi is a continuous mapping gi : X × P → R, i =
1, . . . , nc; and hi is a Lebesgue integrable mapping hi : (t0, tf]×X×P →R,

GLOBAL OPTIMIZATION 163

i = 1, . . . , nc. nc is the number of point and/or isoperimetric constraints.
Furthermore, the functions �, f,h are only permitted a finite number of
stationary simple discontinuities in t (Definition 2.1 in Singer and Barton
(2004)).

In addressing Problem 2.1, we speak of a solution to the differential
equations defined in Problem 2.1 in the sense of Carathéodory. That is, a
solution is considered admissible if the differential equations are satisfied
almost everywhere. By asserting that the differential equations satisfy an
existence and uniqueness condition (Equations 12.2 and 14.2, respectively,
in Walter, 1970) and the set of feasible points is not empty, the existence of
a minimum to Problem 2.1 can be proven. The proof of this assertion is a
trivial extension of Proposition 2.1 and Corollary 2.1 in Singer and Barton
(2004) and is thus omitted here.

3. Development of Convex Relaxations

The algorithm developed for solving Problem 2.1 employs a standard
branch-and-bound algorithm to guarantee convergence to a global solution
in the Euclidean space P . Within this framework, an upper bounding prob-
lem and a lower bounding relaxation must be derived and solved at each
node in the branch-and-bound tree. In our algorithm, an upper bound at
each node is typically computed by solving Problem 2.1 locally. Determin-
ing a rigorous lower bound at each node is much more complicated and is
thus explained in detail below.

As is typical with branch-and-bound algorithms, a convex relaxation is
chosen for the lower bounding problem. Choosing a convex relaxation for
the lower bounding problem implies that a local solution of the lower
bounding problem is a global solution of the relaxation and is therefore
theoretically guaranteed to be a valid lower bound. The idea behind deriv-
ing a convex relaxation for Problem 2.1 is that integrating a pointwise in
time convex underestimator for an integrand provides a convex underes-
timator for an integral. While this result is generally valid, its use in a
practical algorithm is predicated on the ability to find efficiently a convex
relaxation of an integrand defined by the composition of functions known
only via the numerical solution of a system of ODEs. This section develops
a method for constructing a convex relaxation for Problem 2.1.

The analysis begins by deriving the result that a pointwise in time convex
relaxation for a parameter dependent integrand implies a convex relaxation
for the integral on the parameter space. We begin with the following lemma
on the monotonicity of a parameter dependent integral. The notation t is
utilized to represent any fixed time in (t0, tf].

164 A. B. SINGER AND P. I. BARTON

LEMMA 3.1. Let p ∈ P , t ∈ (t0, tf], and �1, �2 : (t0, tf] × P → R such that
�1, �2 are Lebesgue integrable. If

�1(t,p)≤�2(t,p), ∀ (t,p)∈ (t0, tf]×P

then

L1(p)=
∫ tf

t0

�1(t,p) dt ≤
∫ tf

t0

�2(t,p) dt =L2(p), ∀p∈P.

Proof. See Singer and Barton (2004)

The following theorem shows that if a parameter dependent integrand is
convex on P for each fixed t ∈ (t0, tf], the integral is convex on P . Immedi-
ately following this theorem is a corollary that illustrates the construction
of a convex relaxation for an integral from a convex relaxation for the inte-
grand.

THEOREM 3.2. Let p ∈ P , t ∈ (t0, tf], and � : (t0, tf] × P → R be Lebesgue
integrable. If �(t,p) is convex on P for each fixed t ∈ (t0, tf], then

L(p)=
∫ tf

t0

�(t,p) dt

is convex on P .

Proof. By hypothesis, �(t,p) is convex on P , ∀ t ∈ (t0, tf]. Therefore, given
λ∈ (0,1), we have

�(t, λp+ (1−λ)p0)≤λ�(t,p)+ (1−λ)�(t,p0), ∀ (t,p), (t,p0)∈ (t0, tf]×P.

By Lemma 3.1, the above equation implies
∫ tf

t0

�(t, λp+ (1−λ)p0) dt≤
∫ tf

t0

λ�(t,p) dt

+
∫ tf

t0

(1−λ)�(t,p0) dt, ∀p,p0 ∈P,

which by inspection equals

L(λp+ (1−λ)p0)≤λL(p)+ (1−λ)L(p0), ∀p,p0 ∈P.

By definition, L(p) is convex on P .

GLOBAL OPTIMIZATION 165

An interesting implication of requiring only partial convexity of the
integrand in Theorem 3.2 is that even if an integrand is nonconvex on
(t0, tf] × P , its integral may still be convex. The following example illus-
trates this principle.

EXAMPLE 3.3. Consider p ∈ [0,3] and the following integral:

J (p)=
∫ 1

0
− sin(pt) dt.

The integrand is nonconvex on [0,1] × [0,3]; however, the integrand is
partially convex on [0,3] for each fixed t ∈ [0,1]. By Theorem 3.2, J (p)

is convex on [0,3]. Figure 1 below depicts the partially convex integrand,
while Figure 2 illustrates the convex integral.

The following corollary combines Lemma 3.1 with Theorem 3.2 to yield
a result enabling the construction of a convex (and a concave) relaxation
for an integral.

Figure 1. Convex integral from Example 3.3.

166 A. B. SINGER AND P. I. BARTON

Figure 2. Partially convex integrand from Example 3.3.

COROLLARY 3.4. Let p ∈ P , t ∈ (t0, tf], and U, � : (t0, tf] × P → R be
Lebesgue integrable. If U(t,p) is convex on P , ∀ t ∈ (t0, tf] and

U(t,p)≤�(t,p), ∀ (t,p)∈ (t0, tf]×P,

then U(p) is convex on P and U(p)≤L(p), where

U(p)=
∫ tf

t0

U(t,p) dt.

Proof. The proof is immediately evident from Lemma 3.1 and Theorem 3.2.
�

Remark 3.5. An analogous result applies for concave overestimators.

Corollary 3.4 enables one to calculate a convex underestimator for an
integral by integrating a relaxation of the integrand, provided this relax-
ation is convex for each fixed t ∈ (t0, tf]. Because a continuous set con-
tains an uncountable number of points, computing an underestimator at
each fixed t ∈ (t0, tf] is clearly impossible numerically. Obviously, in order
to solve problems practically, numerical integration methods are required;
fixed time quantities are simply computed at each integration time step.

As presented, Theorem 3.2, and consequently Corollary 3.4, apply to
an integrand for which convexity is known on the parameter space P .
If the functional dependence on p for an integrand is explicit, comput-
ing a convex relaxation for this integrand would follow directly from stan-
dard techniques. However, Problem 2.1 contains an integrand that may
have dependence on parameters via composition with the state variables.
Therefore, in order to apply Corollary 3.4 to Problem 2.1, we must first

GLOBAL OPTIMIZATION 167

introduce a method for determining convexity of a composite function. The
theorem presented below is a classical result first presented by McCormick
(1976) for relaxing factorable functions. The discussion following the theo-
rem justifies its use in the context of Problem 2.1.

THEOREM 3.6. Let S ⊂ R
nx be a nonempty convex set. Consider the

function V (v(p)) where v : S →R is continuous, and let S ⊂{p | v(p)∈ [a, b]}.
Suppose that a convex function c(p) and a concave function C(p) satisfying

c(p)≤v(p)≤C(p), ∀p∈S

are available. Denote a convex relaxation of V (·) on [a, b] by eV (·), denote a
concave relaxation of V (·) on [a, b] by EV (·), let zmin be a point at which
V (·) attains its infimum on [a, b], and let zmax be a point at which V (·)
attains its supremum on [a, b]. If the above conditions are satisfied, then

u(p)= eV (mid {c(p),C(p), zmin})

is a convex underestimator for V (v(p)) on S, and

o(x)=EV (mid {c(p),C(p), zmax})

is a concave overestimator for V (v(p)) on S, where the mid function selects
the middle value of three scalars.

Proof. We prove the theorem only for u(p); the proof for o(p) is analo-
gous. First, the convex relaxation eV (·) is broken up into the sum of three
terms: the convex nonincreasing part, the convex nondecreasing part, and
the minimum value. The convex nonincreasing part is defined as

eD
V (v)= eV

(
min{v, zmin}

)−A

and the convex nondecreasing part by

eI
V (v)= eV (max{v, zmin})−A,

where A= eV (zmin). Obviously, then,

eV (v)= eD
V (v)+ eI

V (v)+A.

168 A. B. SINGER AND P. I. BARTON

Consider the chain of inequalities

V (v(x))≥ eV (v(p))= eD
V (v(p))+ eI

V (v(p))+A

≥ eD
V ((min{b,C(p)})+ eI

V (max{a, c(p)})+A

= eV (min{b,C(p), zmin})+ eV (max{a, c(p), zmin})−A

= eV (min{C(p), zmin})+ eV (max{c(p), zmin})−A

= eV (mid{c(p),C(p), zmin}).

The convexity of the underestimating function follows because the mini-
mum of two concave functions is concave, the maximum of two convex
functions is convex, a convex nonincreasing function of a concave func-
tion is convex, and a convex nondecreasing function of a convex function
is convex.

Remark 3.7. In his seminal paper, McCormick (1976) generalized the
results of Theorem 3.6 to terms of the general form T (t (x)) + U(u(x)) ·
V (v(x)). Furthermore, the paper explains how Theorem 3.6 may be applied
recursively to generate a convex underestimator for any factorable pro-
gram.

In this paper, Theorem 3.6 is utilized recursively in order to derive a
convex relaxation for the integrand in the objective function; the integrand
is defined by a composition with x(t,p), which is itself known only indi-
rectly via the solution of the differential equations. As presented, how-
ever, Theorem 3.6 applies to Euclidean optimization problems where the
inner function of the composition is bounded in range. Utilizing any suit-
able state bounding technique (see Section 4), time varying enclosures of
the solution of the differential equations for all p in a hyperrectangle P

may be obtained. We label this interval X(t)= [xL(t),xU(t)] and also make
extensive use of its pointwise in time analog, X(t). A suitable state bound-
ing technique is defined as any method such that as P becomes degener-
ate, X(t) becomes degenerate as well. In this context, the term degenerate
refers to an interval whose lower bound equals its upper bound. For exam-
ple, if Corollary 2.5 in Singer and Barton (Submitted) is satisfied via inter-
val arithmetic techniques, the suitability of the bounding interval becomes
obvious, for at degeneracy of the parameter interval, the bounding differ-
ential system equals the original system of differential equations. Moreover,
because the interval X(t) (and hence X(t)) rigorously bounds the range
of x(t,p) and because X(t) shrinks to degeneracy as P shrinks to degen-
eracy, we have a range interval [a, b] satisfying Theorem 3.6. In the case
where recursion is required to generate an underestimator for the inte-
grand, recursive interval extensions on X(t) provide the additional range

GLOBAL OPTIMIZATION 169

bounding sets; interval monotonicity ensures that the recursively derived
range enclosures also approach degeneracy. To complete the justification
for using Theorem 3.6 for dynamic problems, we must show that the com-
position is performed on a Euclidean space rather than on the function
space X. Clearly, for each fixed t ∈ (t0, tf], X(t) ⊂ R

nx and is therefore a
Euclidean space. Additionally, any fixed time set created by an interval
extensions on X(t) is also a subset of a Euclidean space. This justifies
utilizing Theorem 3.6 in conjunction with Corollary 3.4 to derive convex
relaxations for Problem 2.1.

The only remaining issue in creating convex relaxations for Problem 2.1
is the derivation of convex underestimators c(t,p) and concave overesti-
mators C(t,p) for the state variables. In general, computing c(t,p) and
C(t,p) is a very difficult task. In Singer and Barton (Submitted), we have
developed a general method for computing c(t,p) and C(t,p) for nonqu-
asimonotone ODEs. Assuming the ability to generate state bounds and the
ability to generate convex and concave relaxations on X(t)×P of the right
hand sides of a parameter dependent system of ODEs, the technique con-
structs systems of linear bounding differential equations. By the properties
of linear differential equations, the solutions of these bounding differen-
tial equations are affine in the parameter space for each fixed time and are
therefore both convex and concave. Differential inequalities are utilized to
demonstrate that the bounding differential equations rigorously relax the
state variables. Furthermore, by construction, one can show that degen-
eracy of the parameter space implies that c(t,p) and C(t,p) both equal
x(t,p). Because manual application of the technique is highly error prone,
we have written a program to implement automatically the derivation of
c(t,p) and C(t,p). The convex state bounding theorem is presented below
without proof. First, however, we define the notion of a linearization for a
function.

DEFINITION 3.8. Let Lf(t,y,q)
∣∣
y∗(t),q∗ be a linearization of f(t,x,p) at

(y∗(t),q∗). The linearization is given for i =1, . . . , nx by the following:

Lfi
(t,y,q)

∣∣
y∗(t),q∗ =fi(t,y∗(t),q∗)+

nx∑
j=1

∂fi

∂xj

∣∣∣∣
y∗(t),q∗

(
yj −y∗

j (t)
)

+
np∑

j=1

∂fi

∂pj

∣∣∣∣
y∗(t),q∗

(
qj −q∗

j

)
. (1)

We now present the following theorem utilized for constructing convex
underestimators and concave overestimators for the solution of a parame-
ter dependent ODE.

170 A. B. SINGER AND P. I. BARTON

THEOREM 3.9. Consider

ẋ = f(t,x,p)

x(0,p)=x0(p)

whose solution is bounded by the set X(t) of time varying state bounds
(Section 4 provides a method for computing X(t)). Let P be convex. For
i = 1, . . . , nx and each fixed t ∈ (t0, tf], let ui(t,x,p) be a convex underesti-
mator for fi on X(t)×P and let oi(t,x,p) be a concave overestimator for fi

on X(t)×P . For i =1, . . . , nx , consider the differential equations

ċi =gc,i(t, c,C,p)= inf
z∈C(t,p)
zi=ci (t)

Lui
(t, z,p)

∣∣
x∗(t),p∗

Ċi =gC,i(t, c,C,p)= sup
z∈C(t,p)
zi=Ci(t)

Loi
(t, z,p)

∣∣
x∗(t),p∗

for some reference trajectory (x∗(t),p∗)∈X(t)×P (differentiability of ui and
oi is assumed along the reference trajectory) with initial conditions

c(t0)≤x(t0,p)≤C(t0) ∀ p∈P, (2)

where C(t,p)={z | c(t,p)≤ z ≤C(t,p)}. Then for each fixed t ∈ (t0, tf], c(t,p)

is a convex underestimator for x(t,p) on P and C(t,p) is a concave overes-
timator for x(t,p) on P .

Proof. See Singer and Barton (2004a) for proof and discussion.

Remark 3.10. Differentiability of ui and oi along the reference trajectory
is assumed in order to employ Definition 3.8 to establish a formulaic
representation of the linearization. Theorem 3.9 still holds for nondiffer-
entiable convex functions ui and nondifferentiable concave functions oi

provided any suitable subgradient is chosen for construction. That is, the
linearization employed may be any valid hyperplane supporting the relax-
ation along the reference trajectory. In practice, nondifferentiability typi-
cally arises from taking the maximum or minimum of two valid supporting
hyperplanes (e.g., the relaxation of a bilinear function). In this case, arbi-
trarily choosing either of the two hyperplanes yields a valid relaxation; this
selection process is discussed in detail in Singer (2004a).

Thus far, only abstract theory necessary for relaxing Problem 2.1 has
been presented. A very simple example is now presented to illustrate the
practical computation of a convex underestimator for an integral with an
embedded nonlinear dynamic system. In order to focus entirely on the

GLOBAL OPTIMIZATION 171

derivation of a convex relaxation for the integral, an analytically solvable
differential equation has been selected for the example. Detailed examples
for deriving X(t), c(t,p), and C(t,p) where an analytic solution to the
ODE is not available are found in Singer and Barton (Submitted).

EXAMPLE 3.11. Consider the optimization problem

min
p∈[−3,3]

L(p)=
∫ 1

0
−[x(t,p)]2 dt,

where x(t,p) is given by

ẋ =px

x(0)=−1
p ∈ [−3,3].

This example develops a convex relaxation for L(p) at the root node. The
analytical solution to the differential equation is

x(t,p)=− exp(pt), (3)

and this allows us to compute explicitly the objective function:

L(p)=
{

−1 if p =0
[1− exp(2p)] /(2p) otherwise.

Because the objective function is nonconvex, a global optimization tech-
nique is warranted; hence, a convex relaxation at the root node is required.
From Corollary 3.4, we know that to generate a convex underestimator for
the integral requires a convex underestimator for the integrand. First, the
composition for the integrand is identified. In this case, we trivially have

�(z)=−z2,

where z=x(t,p) is given by the solution of the differential equation (in this
case given explicitly by Equation (3)). From Theorem 3.6, a convex under-
estimator for the integrand is given pointwise in time by

U(t, p)= e
(
mid

{
c(t, p),C(t,p), zmin(t)

})
, ∀ t ∈ [0,1].

Therefore, we must identify e(·), compute X(t) and zmin(t), and derive func-
tions c(t, p) and C(t,p). Because t is always positive, for any fixed t ∈ [0,1],
x(t, p) is monotonically decreasing. This fact enables us to trivially calcu-
late X(t) by interval extensions to yield

X(t)= [− exp(pU t),− exp(pLt)]= [− exp(3t),− exp(−3t)].

172 A. B. SINGER AND P. I. BARTON

For each t ∈ [0,1], � is concave on Z = X(t); therefore, e(z) is simply the
secant given by

e(t, z)= [
xU(t)+xL(t)

] [
xL(t)− z

]− [
xL(t)

]2
, ∀ t ∈ [0,1].

Because
[
xU(t)+xL(t)

]
<0, ∀ t ∈ [0,1], we know that zmin(t)=xL(t), ∀ t ∈

[0,1]. To complete the analysis, we must derive the convex underestimator
c(t, p) and the concave overestimator C(t,p). The second partial deriva-
tive of Equation (3) with respect to p is less than or equal to zero for all
(t, p)∈ [0,1]×P ; thus, the function is always concave. Trivially, we have

C(t,p)=− exp(pt), ∀ t ∈ [0,1]

and

c(t, p)= [exp(pLt)− exp(pU t)](p −pL)/(pU −pL)− exp(pLt), ∀ t ∈ [0,1].

Combining, the pointwise in time underestimator for the integrand is given
by

U(t, p)= [
xU(t)+xL(t)

] [
xL(t)−mid

{
c(t, p), C(t,p), zmin(t)

}]
− [

xL(t)
]2

, ∀ t ∈ [0,1].

By Corollary 3.4, we have that a relaxation for the integral is given by

U(p)=
∫ 1

0
U(t, p) dt.

4. Nonquasimonotone Systems and Exploding Bounds

One of the most challenging aspects of solving Problem 2.1 globally is
the presence of nonquasimonotone differential equations in the embed-
ded dynamics. Applying standard techniques for generating state bounds
(see Walter, 1970 and Harrison, 1977) to nonquasimonotone differen-
tial equations leads to bounds that rapidly explode on short time scales.
That is, on typical time scales of interest, the state bounds generated
by standard techniques exponentially approach infinity. Because generat-
ing convex relaxations for Problem 2.1 requires bounds on the states, state
bounds approaching infinity lead to convex relaxations approaching neg-
ative infinity. Although one can prove that the state bounds for nonqu-
asimonotone systems approach degeneracy as the bounds on P approach
degeneracy, a numerical implementation for solving Problem 2.1 requires
reasonable bounds at all branch-and-bound nodes.

GLOBAL OPTIMIZATION 173

Often for engineering problems, bounding information about the solution
of the differential equations is known independently from the statement
of the differential equations themselves. For example, suppose a system of
differential equations models the concentrations of chemical species under-
going chemical reaction. By conservation of mass, both upper and lower
bounds can be obtained for the states. The set of natural bounds for a
system is labeled X(t,p). The following theorem, taken from Singer and
Barton (Submitted), utilizes X(t) to derive nonexploding state bounds for
systems of nonquasimonotone differential equations.

THEOREM 4.1. Let x(t,p) be a solution of

ẋ = f(t,x,p)

x(t0)=x0(p)

and let x(t,p)∈X(t,p) for each p ∈P , where X(t,p) is known independently
from the solution of the system of differential equations. Furthermore, let
X(t) be defined pointwise in time by

X(t)= [inf
q∈P

X(t,q), sup
q∈P

X(t,q)].

If for i =1, . . . , nx ,

(i) vi(t0)≤ inf
q∈P

xi(t0,q)

(ii) wi(t0)≥ sup
q∈P

xi(t0,q)

and if ∀ v(t),w(t)∈G(t)

(iii) v̇i =gi(t, v,w)≤ inf
z∈X(t)∩G(t), q∈P

zi=vi(t)

fi(t, z,q)

(iv) ẇi =hi(t, v,w)≥ sup
z∈X(t)∩G(t), q∈P

zi=wi(t)

fi(t, z,q),

where G(t)={z | v(t)≤ z ≤w(t)}, then

v(t)≤x(t,p)≤w(t), ∀ (t,p)∈ (t0, tf]×P.

Proof. See Singer and Barton (Submitted) for proof and discussion.

In general, solving the parametric optimization problems defining the
right-hand sides of the state bounding differential inequalities is prohib-
itively expensive. Instead, the solution to the optimization problems is
estimated via interval extensions of the right hand sides of the differen-
tial equations. For the lower [upper] bounding differential equation i, the

174 A. B. SINGER AND P. I. BARTON

equality constraint zi =xL
i [zi =xU

i] is enforced. For all other state variables
j
= i, natural interval arithmetic is applied, where the bounds for variable
j are given pointwise in time by

Xj (t)∩Xj (t)= [
max{xL

j (t), xL
j (t)}, min{xU

j (t), xU
j (t)}] , ∀ t ∈ (t0, tf].

Additionally, the derivative of the state bound is set to zero when the state
bound exceeds its natural bound. Therefore, by construction, X ⊆ X. The
set X is defined for each of the case studies for which this technique is uti-
lized. The authors refer the interested reader to Singer and Barton (2004a)
for a detailed discussion of state bounding.

5. Infinite Convergence of the Branch-and-bound Algorithm

In order to validate the proposed algorithm, the algorithm must be at least
infinitely convergent thus guaranteeing ε convergence to the global solution
in finite time. A branch-and-bound algorithm is said to be at least infinitely
convergent if the selection operation is bound improving and the bounding
operation is consistent (Theorem IV.3 in Horst and Tuy, 1993). Additionally,
convergence requires the ability to delete partitions for which the intersec-
tion of this partition and the feasible space is empty. By definition, a selection
operation is bound improving if at least after a finite number of steps, at least
one partition element where the actual lower bound is attained is selected for
further partitioning (Definition IV.6 in Horst and Tuy, 1993). By Definition
IV.4 in Horst and Tuy (1993), a bounding operation is consistent if, at every
step, any unfathomed partition element can be further refined, and if any
infinite sequence of nested partitions has the property that the lower bound
in any partition converges to the upper bound of this same partition. In other
words, not only must every unfathomed partition be refineable, but as any
infinite sequence of nested partitions approaches its limit set, its lower bound
must converge to the upper bound. In global NLP branch-and-bound algo-
rithms, fathoming of a partition occurs only when its lower bound is greater
than the current best upper bound (or within an ε tolerance). Therefore, par-
titions containing the global minimum are fathomed only at termination. By
construction, the branching strategy employed is exhaustive. In an exhaustive
search, such as bisecting the variable satisfying

arg min
i

∣∣pU
i −pL

i

∣∣ ,
by the finite dimensionality of the problem, every unfathomed partition is
selected for further partitioning after a finite number of steps. Thus, the
retention of partitions on which the global minimum is attained and the
utilization of an exhaustive search together imply a bound improving selec-
tion operation. Furthermore, because P is a subset of a Euclidean space,

GLOBAL OPTIMIZATION 175

by the Archimedean property of the real numbers, any unfathomed parti-
tion can always be refined (by bisection on a coordinate axis, for example);
therefore, the first criterion of a consistent bounding operation is trivially
satisfied. However, it is not immediately obvious whether or not the inte-
gral underestimators obey the second property for consistent bounding.
Proving convergence of a branch-and-bound algorithm for solving Problem
2.1 reduces to proving that any infinite sequence of nested partitions has
the property that the lower bound in any partition converges to the upper
bound of this same partition. Equivalently, convergence follows if the lower
bound in any partition converges pointwise to the objective function in this
same partition as the Euclidean norm of the partition approaches zero (the
interval approaches degeneracy). The proof of this statement requires the
assumption that the relaxation for the integrand of U(p) itself possesses
a consistent bounding operation with monotonic pointwise convergence.
This assumption is justified because the convex underestimators utilized
in standard optimization problems possess the property that as the inter-
val decreases, the convex underestimators become higher with monotonic
pointwise convergence (see for examples McCormick, 1976 or Maranas and
Floudas, 1994). Problem 2.1 considers problems J (p)=φ(tf ,p)+L(p). The
relaxation selected for φ must possess a consistent bounding operation.
Therefore, it is sufficient to consider only the consistent bounding opera-
tion of L(p). The following theorem demonstrates this principle.

THEOREM 5.1. Consider the optimization problem given by

min
p∈P

L(p)=
∫ tf

t0

�(t,x(t,p),p) dt

subject to

ẋ = f(t,x,p)

x(t0,p)=x0(p)

and the relaxation U(p) defined by Corollary 3.4. Let the integrand U(t,p)

be defined by Theorem 3.6, let c(t,p) and C(t,p) be defined by Theorem 3.2
in Singer and Barton (2004a), and let the state bounds be defined by Corol-
lary 2.5 in Singer and Barton (Submitted). If the interval in any partition
approaches degeneracy, then the lower bound in this partition (U(p)) con-
verges pointwise to the upper bound in this partition (L(p)).

Proof. Choose any partition and any fixed t ∈ (t0, tf] and let [pL,pU] be the
bounds on the parameter in this partition. From Corollary 2.5 in Singer
and Barton (Submitted), as the interval [pL,pU] approaches the degener-

176 A. B. SINGER AND P. I. BARTON

ate value pd , the interval [xL(t),xU(t)] approaches the degenerate value of
xd(t). To be valid, the convex underestimator ui and the concave over-
estimator oi from Theorem 3.2 in Singer and Barton (Submitted) must
themselves possess a consistent bounding operation and hence as X(t)×P

shrinks to degeneracy, ui ↑ fi and oi ↓ fi for i = 1, . . . , nx . The right-hand
sides of the equations defining ċi and Ċi are linearizations on ui and oi ,
respectively. Since ui and oi are each approaching fi , choosing (x∗(t),p∗)=
(xd(t),pd), we have that gc,i(c,C,p) ↑ fi(x,p) and gC,i(c,C,p) ↓ fi(x,p)

since the linearization approaches the value of the function it approximates
at the point of linearization. Now, suppose that at each step k, the inter-
val [pL,pU]i is bisected (or reduced in some other manner) such that as
k → ∞, [pL,pU]k → pd (the reduction is possible because the subdivision
rule is exhaustive). By construction, we have the following sequence:

Uk ↑� as k →∞ for t ∈ [t0, tf],

where the convergence arises because the McCormick underestimator U

possesses a consistent bounding operation (with monotonic convergence)
as [pL,pU] approaches degeneracy. Because t was fixed arbitrarily, the con-
vergence is true for all t ∈ [t0, tf]. By the monotone convergence theorem
(Theorem 1, Section 2.3 in Adams and Guillemin, 1996),

L(pd)=
∫ tf

t0

� dt = lim
k→∞

∫ tf

t0

Uk dt =U(pd).

Because the partition was arbitrarily chosen, the convergence is applicable
to any partition.

Remark 5.2. Strictly speaking, the monotone convergence theorem only
applies to positive sequences. Of course, if U is not positive over all of
[t0, tf], then U can be divided into U+ and U−, and the integral can be
written as the difference of integrals possessing only positive integrands.
The monotone convergence theorem is then applied piecewise.

Theorem 5.1 illustrates that the convex relaxations constructed in this
paper indeed possess a consistent bounding operation. The arguments
immediately preceeding Theorem 5.1 already justify that the selection oper-
ation is bound improving. Therefore, by Theorem IV.3 in Horst and Toy
(1993), the branch-and-bound algorithm considered in this paper has infi-
nite convergence to the global solution of Problem 2.1 thus validating the
approach presented for solving Problem 2.1.

GLOBAL OPTIMIZATION 177

6. Numerical implementation

In order to solve Problem 2.1 for practical problems, a general purpose,
numerical program, named GDOC, has been written. The program itself
is divisible into four modules: branch-and-bound, numerical optimization,
numerical integration with parametric sensitivity, and residual evaluation.
Because solving Problem 2.1 is computationally expensive, a compiled code
approach was selected in preference to an interpreted approach. Where
applicable, publicly available libraries were utilized, and when necessary,
custom code was designed and written. The development platform was
SuSE Linux using gcc version 3.3.1. The remainder of this section discusses
the four modules individually with reference to the specific routines utilized
for solving the case studies in this paper. However, due to the orthogonality
of the design, the individual modules are easily replaceable with analogous
routines.

6.1. branch-and-bound

At the inception of this project, the authors were unaware of any publicly
available branch-and-bound libraries providing source code. Therefore, a
custom branch-and-bound library was written in C++, libBandB; the
current version of the code is Version 3.2, Singer (2004b). LibBandB
provides several run-time configurable user options and heuristics. Unless
otherwise noted, for comparison purposes, the case studies examined in this
paper were performed without using any branch-and-bound heuristics. The
method for selecting the next node on which to branch was to select the
node in the branch-and-bound tree with the least lower bound. At each
node, the variable with the greatest distance between its upper bound and
lower bound was selected for branching, and the branching was performed
by bisection. The tolerance to which each case study was solved is noted
in the Case Studies Section.

6.2. local optimization

As previously mentioned, local optimization of the original problem was
utilized to provide upper bounds at each node and local optimization of
a convex relaxation was utilized to provide lower bounds at each node.
In general, the most computationally expensive aspect to solving Problem
2.1 is the repeated numerical integrations required to provide both objec-
tive function values and gradients for the optimization. Thus, a sequential
quadratic programming routine was chosen in order to limit the number of
integration calls required to perform the optimization. Because most of the
case studies examined are small, dense problems, NPSOL version 5.0 (Gill
et al., 1998) was utilized. NPSOL’s optimization tolerance was always set

178 A. B. SINGER AND P. I. BARTON

at least two orders of magnitude smaller than the branch-and-bound tol-
erance and at least two orders of magnitude greater than the integration
tolerance for each specific problem.

6.3. numerical integration

In order to compute both the objective function and the gradient of the
objective function, the integral and the associated ODEs for Problem 2.1
must be numerically solved. Because many of the problems addressed in
the Case Studies Section are stiff and dense, CVODES (Hindmarsh and
Serban, 2002) was chosen for numerical integration, and the sensitivities
were computed via the staggered corrector option (Feehery et al., 1997). By
design, CVODES is capable of numerically solving any system of nonlinear
ODEs possessing Lipschitz continuity of the right hand side of the ODEs.
For the problems considered in this paper, the upper bounding problem
obeys this assumption at least between points of explicit time discontinu-
ities; CVODES is reset at time events. However, by construction, the ODEs
in the lower bounding problem do not necessarily possess Lipschitz con-
tinuous right hand sides between explicit time discontinuities, for the lower
bound possesses state events. This condition arises because the convex and
concave relaxations of the right-hand sides of the ODEs defining ċ and Ċ
may not be smooth. If this condition occurs, then the derivatives of the
relaxations may be discontinuous causing nonsmooth shifts through time in
the linearizations of the relaxation equations. Although this nonsmoothness
does not pose any theoretical limitations (see Singer and Barton, Submit-
ted), this nonsmoothness often causes CVODES to fail. Therefore, a dis-
continuity locking layer with bisection event detection was written around
CVODES. Because any valid support linearization yields valid relaxations
c and C, the mode actually selected at an event is arbitrary. Because the
selection of the integration mode at an event is arbitrary, chattering in the
numerical integration is prevented by locking the residual routine into an
arbitrary mode while chattering ensues. A complete discussion of discon-
tinuity locking and its impact on the performance of the numerical inte-
gration is beyond the scope of this paper; the interested reader is referred
to Singer (2004a). The authors note that chattering bears no implication
on the quality of the integration, for locking in any arbitrary mode has
only the effect of isolating one of the distinct linearizations. However, the
selection of the linearization can affect the tightness of the resulting relax-
ation. Unfortunately, no a priori method exists to indicate which lineariza-
tion provides a tighter relaxation. Both the absolute and relative tolerances
for the integrator were set to 10−8 for all of the case studies; this value was
always at least two orders of magnitude smaller than the tolerance set for
the optimization routine.

GLOBAL OPTIMIZATION 179

As previously mentioned, numerically solving the ODEs is the most com-
putationally expensive aspect of solving Problem 2.1. Clearly, integrating
the lower bounding problem is more expensive than integrating the upper
bounding problem, for the lower bounding problem is both four times
larger than the upper bounding problem (in number of state equations) and
requires discontinuity locking. In general, each major iteration in the opti-
mization routine requires an integration call because the lower bound is
parameter dependent. However, for problems only requiring the objective
function at fixed time points (i.e., the objective function does not contain
an integral), the affine structure of c and C may be exploited to reduce the
number of required integrations. In order to compute the lower bound at
a fixed time t , we must be able to compute X(t), c(t,p), and C(t,p). By
definition, the state bounds are parameter independent; therefore, they need
not be recomputed for each major iteration of the optimizer. Furthermore,
because c and C are both affine, from Singer and Barton (2004), we know
they have the following structure:

c(t,p)=Mc(t)p+nc(t)

C(t,p)=MC(t)p+nC(t).

Thus, by integrating once and subsequently storing the state bounds,
Mc(t), MC(t), nc(t), and nC(t), c(t,p) and C(t,p) can be computed via lin-
ear algebra instead of numerical integration on future major iterations of
the optimizer. The computation of Mc(t) and MC(t) is effectively free, for
they are simply the parametric sensitivities, which are already computed
for the calculation of the gradient of the lower bound. The values nc(t)

and nC(t) can either be computed by augmenting the original system with
an additional set of differential equations as shown in Singer and Barton
(2004) or via linear algebra. The error in c(t,p) and C(t,p) introduced by
the linear algebra calculation is negligible if the problem is scaled such that
pU

i −pL
i is order one for i =1, . . . , np.

An interesting aspect of exploiting the linear algebra for solving the
lower bounding problem is that this technique also enables one to com-
pute an upper bound for the problem without performing any integration.
From Theorem 3.6, once c(t,p) and C(t,p) have been computed, the only
additional information required for constructing a concave overestimator
for a state composition is determining zmax . A rigorous upper bound could
then be computed by maximizing the concave overestimator for the objec-
tive function, and we note simply that the upper bound converges to the
objective function value in an analogous manner to the convergence of
the lower bound to the objective function. Furthermore, because the state
relaxations are affine, depending on the structure of the objective function,

180 A. B. SINGER AND P. I. BARTON

Problem 2.1 may be completely reducible to solving a sequence of con-
verging upper and lower bounding linear programs requiring only one inte-
gration per branch-and-bound node. However, because solving the original
problem locally is relatively inexpensive computationally, periodically solv-
ing the original problem locally provides a better incumbent by which to
fathom in the branch-and-bound algorithm hence accelerating the conver-
gence of the algorithm.

6.4. residual evaluation

The residual evaluation is actually the most complicated of the four mod-
ules of the code. While the upper bounding problem is easily coded man-
ually, the generation of code for the lower bounding problem requires the
application of Theorem 3.6, the computation of the state bounds (Corol-
lary 2.5 in Singer and Barton, Submitted) and the application of the lin-
ear bounding theorem (Theorem 3.2 in Singer and Barton, Submitted). To
complicate matters further, this analysis is unique for each individual prob-
lem. Because the manual application of the requisite theory would be both
tedious and error prone, a compiler was written to automatically generate
the residual routines for both the upper and lower bounding problems. The
user writes the dynamics of the problem in a simple input language, and
the compiler generates a series of discontinuity locked Fortran 77 subrou-
tines defining the residuals for both the upper and lower bounding prob-
lems. This residual file is simply compiled and linked to the numerical ODE
solver, the local optimizer, and the branch-and-bound routine.

7. Case Studies

This section examines several literature example problems. As previously stated,
unless otherwise noted, no branch-and-bound heuristics are utilized to accel-
erate convergence. For point constrained problems, the linear structure of the
convex relaxation is always exploited, and the lower bounding integration is
only performed for the first optimization function call at a given node. The
set X is defined for each of the case studies for which this technique is uti-
lized. Finally, the notation x∗ represents the reference trajectory for vari-
able x; the reference trajectories for both states and parameters are given
for each problem. The computations were all performed on an AMD Ath-
lon XP2000+ operating at 1667 MHz running SuSE linux kernel 2.4.

7.1. first-order irreversible series reaction

The first example is a simple parameter estimation problem first proposed
by Tjoa and Biegler (1991). As with all parameter estimation problems, the

GLOBAL OPTIMIZATION 181

objective is to minimize the error between “experimental” data and the pre-
diction of the model. For this problem, the kinetics are given by

A
k1−→B

k2−→C,

and the data were taken from Floudas et al. (1999). The problem is math-
ematically formulated below.

min
k

10∑
µ=1

2∑
i=1

(
x̂µ,i −xµ,i

)2
,

where x̂i(t,k) is given by

dx̂1

dt
=−k1x̂1

dx̂2

dt
=k1x̂1 −k2x̂2

x̂(0)= (1,0)

k ∈ [0,10]2

(k∗,x∗(t))= (kL,xL(t)) ∀ t ∈ (t0, tf].

GDOC was used to solve this problem to a global minimum within an
absolute branch-and-bound tolerance of 10−4. GDOC terminated in 0.036
CPU seconds with an objective function value of 1.22×10−6 at the point
(5.0, 1.0), but the absolute value of the objective function at termination
should be viewed with some skepticism considering the tolerance of the
branch-and-bound code. Because the data in Floudas et al. (1999) differs
from the exact prediction of the model only by roundoff error, the global
minimum value of this problem is effectively zero (within the propagation
of the roundoff error) since the model exactly fits the data. Furthermore,
although the problem is nonconvex, the objective function possesses only
one local minimum. By construction, our algorithm guarantees that the
convex relaxation for this problem is nonnegative. As expected, utilizing a
local solution for the upper bound, the problem was trivially solved at the
root node.

7.2. first-order reversible series reaction

The second example problem presented, also attributed to Tjoa and Beigler
(1991), extends the first example by allowing reversibility of the kinetic
equation:

182 A. B. SINGER AND P. I. BARTON

A
k1�
k2

B
k3�
k4

C.

The data for this problem were also obtained from Floudas et al. (1999).
Aside from simply possessing more degrees of freedom, solving the prob-
lem with reversible kinetics is slightly more difficult than solving the prob-
lem with irreversible kinetics because the dynamics are nonquasimonotone.
However, this difficulty is overcome by utilizing Theorem 4.1 to generate
state bounds; the state bounding equations utilized in this case study are
found in Appendix A. The problem is mathematically stated as

min
k

20∑
µ=1

3∑
i=1

(
x̂µ,i −xµ,i

)2

where x̂i(t,k) is given by

˙̂x1 =−k1x̂1 +k2x̂2

˙̂x2 =k1x̂1 − (k2 +k3)x̂2 +k4x̂3

˙̂x3 =k3x̂2 −k4x̂3

x̂(0)= (1,0,0)

X= [0,1]3

k ∈ [0,10]2 × [10,50]2

(k∗,x∗(t))= (kL,xL(t)) ∀ t ∈ (t0, tf].

As with the previous problem, using a branch-and-bound tolerance of
10−4, this problem also solved at the root node because the literature data
for this problem also contains no error. GDOC terminated in 0.044 CPU
s with an objective function value of 7.69 × 10−5 at the point (4.00, 2.00,
40.0, 20.0).

7.3. catalytic cracking of gas oil

The following problem is another parameter estimation problem attributed
to Tjoa ad Biegler (1991). The problem is stated as

min
k

20∑
µ=1

2∑
i=1

(
x̂µ,i −xµ,i

)2
,

where x̂i(t,k) is given by

GLOBAL OPTIMIZATION 183

˙̂x1 =−(k1 +k3)x̂
2
1

˙̂x2 =k1x̂
2
1 −k2x̂2

x̂(0)= (1,0)

X= [0,1]2

k ∈ [0,20]2

(k∗,x∗)= (kmid,xmid(t)) ∀ t ∈ (t0, tf].

Unlike the previous two problems, the fitted data for this problem at the
global minimum do not exactly fit the “experimental” data. Because the
objective function value at termination for this problem is close to zero,
the authors believe that solving the problem to an absolute error tolerance
is the most sensible approach. Table 1 presents the results for solving this
problem.

7.4. singular control

The next problem we examine is the singular control problem originally
formulated in Luus (1990). The problem is given by

min
u(t)

∫ tf

t0

x2
1 +x2

2 +0.0005(x2 +16t −8−0.1x3u
2)2 dt

subject to

ẋ1 =x2

ẋ2 =−x3u+16t −8

ẋ3 =u

x0 = (0,−1,−
√

5)

t ∈ (0,1] −4≤u(t)≤10

(p∗,x∗(t))= (pU,xU(t)) ∀ t ∈ (t0, tf],

Table 1. Results for catalytic cracking of gas oil problem

Objective function Location CPUs Nodes Absolute tolerance

2.66×10−3 (12.2, 7.98, 2.22) 0.18 1 10−2

2.66×10−3 (12.2, 7.98, 2.22) 5.78 83 10−3

2.66×10−3 (12.2, 7.98, 2.22) 12.23 189 10−4

2.66×10−3 (12.2, 7.98, 2.22) 19.40 295 10−5

184 A. B. SINGER AND P. I. BARTON

where the variable p in the reference trajectory derives from a piecewise
constant control parameterization. Because this problem does not derive
from a physical system, no natural bounding set exists. Studying the sin-
gular control problem enables us to examine a very important tradeoff
in implementing a solution strategy for problems with integral objective
functions. The theoretical presentation of the algorithm has emphasized
relaxing Problem 2.1 utilizing Corollary 3.4 to relax the integral directly.
As previously stated, in applying Corollary 3.4, the relaxation for the inte-
grand must be constructed for each fixed t ∈ (t0, tf]. Under this require-
ment, the affine nature of the relaxations c(t,p) and C(t,p) cannot be
exploited, and an integration must be performed for each major iteration
of the optimizer. Trivially, however, the singular control problem can be
reformulated as

min
u(t)

z(tf)

subject to

ẋ1 =x2

ẋ2 =−x3u+16t −8

ẋ3 =u

ż=x2
1 +x2

2 +0.0005(x2 +16t −8−0.1x3u
2)2

z(0)=0

x0 = (0,−1,−
√

5)

t ∈ (0,1] −4≤u(t)≤10

(p∗,x∗(t))= (pU,xU(t)) ∀ t ∈ (t0, tf],

where the integrand has simply been replaced by a quadrature variable; this
transformation is quite common in the literature and is always possible.
Now, the affine nature of the state relaxations can be exploited, for we only
need relaxations at a fixed time. The problem was solved by GDOC in
both the original formulation and the quadrature variable reformulation;
the results are presented in Tables 2 and 3. For each formulation, the prob-
lem was solved to an absolute tolerance of 10−3 with piecewise constant
control profiles on equally spaced meshes with a varying number of time
intervals. Additionally, each problem was solved with and without post-
processing, Lagrangian reduce heuristics as defined in Sahinidis (1995). The
authors note that the utilization of reduce heuristics does not affect the
quality of the solution but only enhance the performance of the algorithm.

As expected, the number of nodes required to solve the integral formu-
lation is less than the number of nodes required to solve the quadrature

GLOBAL OPTIMIZATION 185

formulation. This is a common feature for problems with nonlinear dynam-
ics, particularly in cases where the integrand is highly nonlinear, for adding
additional nonlinearity in the dynamics decreases the tightness of the state
bounds and the tightness of the state relaxations. For the problem consid-
ered, the CPU time required for solution is also less for the integral for-
mulation than for the quadrature formulation. However, one quickly notes
that the cost per node for the quadrature formulation is smaller than the
cost per node for the integral formulation; furthermore, the relative cost
per node for the quadrature formulation decreases with the increasing num-
ber of parameters because the cost of the integration increases slightly with
an increasing number of parameters. Thus, this tradeoff must be considered
individually for each problem. In general though, the authors anticipate
that an integral formulation will almost always outperform a quadrature
reformulation, especially for small problems or problems with highly non-
linear integrands.

7.5. oil shale pyrolysis

The final problem examined is a fixed final time formulation of the Oil
Shale Pyrolysis problem originally posed in Luus (1990). The problem is
stated below.

min
u(t)

−x2(tf)

ẋ1 =−(k1x1 +k3x1x2 +k4x1x2 +k5x1x2)

ẋ2 =k1x1 −k2x2 +k3x1x2

ki =ai exp
[−bi/R

698.15+50u

]
, i =1, . . . ,5

x(t0)= (1,0)

X= [0,1]2

t ∈ (0,1] 0≤u(t)≤1

(p∗,x∗(t))= (pU,xU(t)), ∀ t ∈ (t0, tf],

Table 2. Results for singular control problem in original formulation

No. time intervals Objective function Location CPUs Nodes Heuristics

1 0.497 (4.07) 2.0 21 No
1 0.497 (4.07) 1.8 15 Yes
2 0.277 (5.57, −4.00) 26.5 89 No
2 0.277 (5.57, −4.00) 22.5 47 Yes
3 0.146 (8.05, −1.85, 6.09) 814.3 1225 No
3 0.146 (8.05, −1.85, 6.09) 540.3 489 Yes

186 A. B. SINGER AND P. I. BARTON

Table 3. Results for singular control problem in quadrature variable reformulation

No. time intervals Objective function Location CPUs Nodes Heuristics

1 0.497 (4.07) 5.2 33 No
1 0.497 (4.07) 3.4 15 Yes
2 0.277 (5.57, −4.00) 55.1 193 No
2 0.277 (5.57, −4.00) 28.8 49 Yes
3 0.146 (8.05, −1.85, 6.09) 1929.0 3931 No
3 0.146 (8.05, −1.85, 6.09) 816.3 789 Yes

Table 4. Results for oil shale pyrolysis problem

No. time intervals objective function location CPU s nodes heuristics

1 −0.348 (0.231) 27.3 127 No
1 −0.348 (0.231) 26.2 115 Yes
2 −0.351 (0.431, 0.00) 1720.7 5807 No
2 −0.351 (0.431, 0.00) 1597.3 4933 Yes

where the variable p in the reference trajectory derives from a piecewise
constant control parameterization, and the values for ai and bi/R are
defined in Floudas et al. (1999). This problem was solved within an abso-
lute error of 10−3 for a piecewise constant control profile. The problem was
solved with both one and two equally spaced time intervals. The results are
found in Table 4.

From the relative change in the objective function between using a one
stage and two stage constant profile, we can conclude that increasing the
number of control stages beyond two is unnecessary. Furthermore, this
problem clearly demonstrates the worst case exponential complexity of
the branch-and-bound algorithm. This problem does not converge rapidly
because the state bounds tighten very slowly with the branching in the
parameter space. This in turn implies weaker state relaxations and hence
slower overall convergence.

8. Conclusions

In this paper, we presented a branch-and-bound algorithm for globally
solving optimization problems with an integral objective function subject
to nonquasimonotone differential equations. The branch-and-bound algo-
rithm converges to the global solution by creating a sequence of con-
verging upper and lower bounds on the original problem. In general, a
local solution to the optimization problem is utilized as the upper bound,

GLOBAL OPTIMIZATION 187

and we show that a convex relaxation for the problem is derived by inte-
grating a convex relaxation of the integrand. Because the integrand is
typically defined by a composition of both state variables and parame-
ters, we illustrate a dynamic extension to the composition technique of
McCormick (1976) that incorporates previously developed ideas concerning
convex bounding of the solution of nonquasimonotone differential equa-
tions. Utilizing the derived relaxations, we prove the convergence of the
branch-and-bound algorithm. The remainder of the paper was devoted
to an implementation of the developed theory. In order to solve global
dynamic optimization problems, a compiler was developed for applying the
relaxation theory to generate automatically residual files for a numerical
ODE solver. The numerical ODE solver was then combined with a local
optimization routine and a branch-and-bound program to solve Problem
2.1. Several case study problems were solved utilizing the implementation.

The algorithm we have presented for solving Problem 2.1 has four dis-
tinct advantages over other deterministic algorithms in the literature. First,
the problem scales well in the complexity of the lower bounding prob-
lem. Constructing convex relaxations only requires four additional state
equations for each state and no additional equations for increasing num-
bers of parameters. Second, the problem exploits the integral structure
of the objective function to generate tighter relaxations than reformulat-
ing the integral as an additional quadrature variable. Third, the theory
we have developed extensively exploits linear relaxations whenever possible
and thus replaces numerical integration with linear algebra computations.
Fourth, the algorithm generates tight state bounds for nonquasimonotone
ODEs subject to the availability of physical bounds. However, the efficient
solution of Problem 2.1 for large scale problems still remains a daunting
challenge. The compiler developed for solving the problems in this paper
is merely a proof of concept prototype. A second generation compiler is
currently being developed that extensively incorporates ideas from algorith-
mic differentiation to eliminate many redundant computations in the resid-
ual calculation. While the new compiler implementation will improve the
numerical efficiency of the algorithm, many research areas still remain open
for efficiently solving Problem 2.1. In particular, tighter convex relaxations,
tighter state bounds, and reliable heuristics need to be developed before
efficiently solving global dynamic optimization problems for large scale sys-
tems becomes a reality.

Acknowledgements

ABS would like to thank Dr. Benoı̂t Chachuat for nearly daily discussions
concerning the refinement of the implementation of the theory presented
in this paper. In particular, Dr. Chachuat contributed to and lobbied for

188 A. B. SINGER AND P. I. BARTON

the implementation exploiting the affine structure of the convex and con-
cave relaxation for the purpose of decreasing the computational time for
computing both upper and lower bounds for Problem 2.1. This material
is based upon work supported by the National Science Foundation under
Grant CTS0120441.

Appendix A: Derivation of state bounds for Section 7.2

From Section 7.2, the following nonquasimonotone differential equations
are given defining the state variables (where the hats have been dropped for
notational convenience):

ẋ1 =−k1x1 +k2x2

ẋ2 =k1x1 − (k2 +k3)x2 +k4x3

ẋ3 =k3x2 −k4x3

where the sets

X= [xL
1 , xU

1]× [xL
2 , xU

2]× [xL
3 , xU

3]

and

K = [kL
1 , kU

1]× [kL
2 , kU

2]× [kL
3 , kU

3]× [kL
4 , kU

4]

are utilized instead of their respective numeric values. From Theorem 4.1,
the following equations define the state bounds for the above differential
equations:

ẋL
1 =−max{kL

1 xL
1 , kU

1 xL
1 }+min{kL

2 max{xL
2 , xL

2 }, kL
2

×min{xU
2 , xU

2 }, kU
2 max{xL

2 , xL
2 }, kU

2 min{xU
2 , xU

2 }}

ẋL
2 = min{kL

1 max{xL
1 , xL

1 }, kL
1 min{xU

1 , xU
1 }, kU

1 max{xL
1 , xL

1 }, kU
1

×min{xU
1 , xU

1 }}−max{kL
2 xL

2 , kU
2 xL

2 }−max{kL
3 xL

2 , kU
3 xL

2 }
+min{kL

4 max{xL
3 , xL

3 }, kL
4 min{xU

3 , xU
3 }, kU

4 max{xL
3 , xL

3 }, kU
4

×min{xU
3 , xU

3 }}

ẋL
3 =−max{kL

4 xL
3 , kU

4 xL
3 }+min{kL

3 max{xL
2 , xL

2 }, kL
3 min{xU

2 , xU
2 }, kU

3

×max{xL
2 , xL

2 }, kU
3 min{xU

2 , xU
2 }}

ẋU
1 =−min{kL

1 xU
1 , kU

1 xU
1 }+max{kL

2 max{xL
2 , xL

2 }, kL
2 min{xU

2 , xU
2 }, kU

2

×max{xL
2 , xL

2 }, kU
2 min{xU

2 , xU }}

GLOBAL OPTIMIZATION 189

ẋU
2 = max{kL

1 max{xL
1 , xL

1 }, kL
1 min{xU

1 , xU
1 }, kU

1 max{xL
1 , xL

1 }, kU
1

×min{xU
1 , xU

1 }}−min{kL
2 xU

2 , kU
2 xU

2 }−min{kL
3 xU

2 , kU
3 xU

2 }
+max{kL

4 max{xL
3 , xL

3 }, kL
4 min{xU

3 , xU
3 }, kU

4 max{xL
3 , xL

3 },
×kU

4 min{xU
3 , xU

3 }}

ẋU
3 =−min{kL

4 xU
3 , kU

4 xU
3 }+max{kL

3 max{xL
2 , xL

2 }, kL
3 min{xU

2 , xU
2 }, kU

3

×max{xL
2 , xL

2 }, kU
3 min{xU

2 , xU
2 }}.

References

1. Adams, M. and Guillemin, V. (1996), Measure Theory and Probability. Birkhäuser,
Boston.

2. Adjiman, C., Dallwig, S., and Floudas, C. (1998a), A global optimization method, αBB,
for general twice-differentiable constrained NLPs – II. Implementation and computa-
tional results, Computers and Chemical Engineering 22(9), 1159–1179.

3. Adjiman, C., Dallwig, S., Floudas, C., and Neumaier, A. (1998b), A global optimiza-
tion method, αBB, for general twice-differentiable constrained NLPs – I. Theoretical
advances. Computers and Chemical Engineering 22(9), 1137–1158.

4. Arthur E. Bryson, Jr. and Ho, Y.-C. (1975), Applied Optimal Control. Taylor & Francis,
Briston, Pennsylvania.

5. Brusch, R. and Schappelle, R. (1973), Solution of highly constrained optimal control
problems using nonlinear programming, AIAA Journal 11(2), 135–136.

6. Esposito, W.R. and Floudas, C.A. (2000a), Deterministic global optimization in nonlin-
ear optimal control problems. Journal of Global Optimization 17, 97–126.

7. Esposito, W.R. and Floudas, C.A. (2000b), Global optimization for the parameter esti-
mation of differential-algebraic systems, Industrial and Engineering Chemistry Research
39, 1291–1310.

8. Feehery, W., Tolsma, J., and Barton, P. (1997), Efficient sensitivity analysis of large-scale
differential-algebraic systems, Applied Numerical Mathematics 25(1), 41–54.

9. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding,
S.T., Klepeis, J.L., Meyer, C.A., and Schweiger, C.A. (1999), Handbook of Test Problems
in Local and Global Optimization, Kluwer Academic Publishers, Dordrecht.

10. Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H. (1998), User’s Guide for
NPSOL 5.0: A Fortran Package for Nonlinear Programming. Technical report, Stanford
University.

11. Harrison, G. (1977), Dynamic models with uncertain parameters, In: Avula, X. (ed.),
Proceedings of the First International Conference on Mathematical Modeling, vol. 1, pp.
295–304.

12. Hindmarsh, A.C. and Serban, R. (2002), User Documentation for CVODES, An ODE
Solver with Sensitivity Analysis Capabilities. Technical report, Lawrence Livermore
National Laboratory.

13. Horst, R. and Tuy, H. (1993), Global Optimization. Springer-Verlag, Berlin.
14. Luus, R. (1990), Optimal control by dynamic programming using systematic reduction

in grid size, International Journal of Control 5, 995–1013.
15. Maranas, C. and Floudas, C. (1994), Global minimum potential energy conformations

of small molecules, Journal of Global Optimization 4, 135–170.

190 A. B. SINGER AND P. I. BARTON

16. McCormick, G.P. (1976). Computability of global solutions to factorable nonconvex
programs: Part I – convex underestimating problems, Mathematical Programming 10,
147–175.

17. Neuman, C. and Sen, A. (1973), A suboptimal control algorithm for constrained prob-
lems using cubic splines, Automatica 9, 601–613.

18. Papamichail, I. and Adjiman, C.S. (2002), A rigorous global optimization algorithm for
problems with ordinary differential equations, Journal of Global Optimization 24, 1–33.

19. Pontriagin, L. (1962), The Mathematical Theory of Optimal Processes. Interscience Pub-
lishers, New York.

20. Ryoo, H. and Sahinidis, N. (1995), Global optimization of nonconvex NLPs and MINLPs
with application in process design, Computers and Chemical Engineering 19(5), 551–566.

21. Singer, A.B. (2004a). Global Dynamic Optimization, Ph.D. thesis, Massachusetts Institute
of Technology.

22. Singer, A.B. (2004b). LibBandB Version 3.2 Manual, Technical report, Massachusetts
Institute of Technology.

23. Singer, A.B. and Barton, P.I. (2004), Global Solution of linear dynamic embedded opti-
mization problems, Journal of Optimization Theory and Applications 121(3), 613–646.

24. Teo, K., Goh, G., and Wong, K. (1991), A Unified Computational Approach to Optimal
Control Problems. Pitman Monographs and Surveys in Pure and Applied Mathematics.
John Wiley & Sons, New York.

25. Tjoa, I. and Biegler, L. (1991), Simultaneous solution and optimization strategies for
parameter-estimation of differential-algebraic equation systems, Industrial and Engineer-
ing Chemistry Research 30(2), 376–385.

26. Troutman, J.L. (1996). Variational Calculus and Optimal Control: Optimization with Ele-
mentary Convexity, 2nd edn., Springer-Verlag, New York.

27. Tsang, T., Himmelblau, D., and Edgar, T. (1975), Optimal control via collocation and
nonlinear programming, International Journal of Control 21, 763–768.

28. Walter, W. (1970), Differential and Integral Inequalities, Springer-Verlag, Berlin.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

